На главную

Посторонний звук от двигателя и экспертиза причины его возникновения.

Звук — механические колебания, распространяющиеся в виде упругих волн в твердой, жидкой и газообразной среде. Как и любая другая волна звук характеризуется амплитудой и спектром частот. С точки зрения восприятия человеком под звуком понимают колебания воздушной (внешней) среды в диапазоне частот от 20Гц до 20кГц.

Взаимодействие твердых тел, а также взаимодействие жидкостей или газов как с твердыми телами, так и между собой могут являться источником механических колебаний со звуковыми частотами.

Автомобиль в своей конструкции имеет подвижные соединения, гидравлические и пневматические системы, работа которых сопровождается звуковыми колебаниями в слышимом диапазоне частот, которые передаются в окружающую среду (воздух) и воспринимаются органами слуха человека.

Как таковой, ЗВУК не может трактоваться как дефект! Очень важно понимать, что звук если он есть и является посторонним, то у него есть причина. Это является признаком для технического специалиста начать диагностику! Вот анализ узла и в частности его конструкции дает ответ дефект это или особенность работы механизма. Если причина звука является дефектом, то можно констатировать его характер (производственный, эксплуатационный или вмешательство третьих лиц).

Рассмотрим несколько источников звука в двигателе внутреннего сгорания (далее по тексту двигателе) автомобиля, которые являются неявной причиной для специалистов.

Подвижные соединения, работающие под знакопеременной нагрузкой - это опоры коленчатого и других валов. В качестве опор используются подшипники скольжения (Илл. 1).  В подшипнике скольжения происходит скольжение внешней поверхности вала, совершающего вращательное движение относительно внутренней поверхности вкладыша, закрепленного в корпусе. Вал во вкладышах установлен с зазором, без которого соединение не могло быть подвижным. Такие подшипники применяются в опорах коленчатого и распределительного валов, головках шатунов. В данных подшипниках непосредственного контакта поверхностей не происходит, так как их разделяет слой смазочного материала, подаваемый системой смазки двигателя.

Смазка значительно понижает коэффициент трения, отводит тепло и продукты износа. С точки зрения образования звука смазка также выполняет важную функцию – значительно смягчает удар при перекладке вала в результате изменения направления действия силы (F на илл. 1). В результате смазка выполняет функцию подушки, которая значительно снижает удар и производимый им звук. При увеличении зазора увеличивается скорость, которую достигает вал в момент перекладки (за счет большего расстояния, проходимого им под действием той же силы и, соответственно ускорения). Торможение вала с большей скорости о масляную пленку вызывает больший удар и, соответственно, более интенсивный звук. Нагрузка на взаимодействующие поверхности вала и вкладыша при увеличении зазора также увеличивается. Работа подшипника скольжения с повышенным зазором сопровождается повышенным уровнем шума, а также повышенным износом взаимодействующих поверхностей. При работе исправного двигателя звук работы подшипников скольжения практически не заметен на общем звуковом фоне. Заметные стуки из подшипников скольжения свидетельствуют о значительном зазоре. С ростом прогрева двигателя данные стуки усиливаются, так как повышение температуры приводит к снижению вязкости моторного масла.

Подвижное соединение поршень-цилиндр также имеет зазор. Шатун совершает качательные движения относительно оси его верхней головки. Соединение верхней головки шатуна и поршня выполнено с применением подшипника скольжения. Сила трения, возникающая в данном подшипнике воздействует на поршень и приводит к его провороту по оси верхней головки шатуна. На илл. 2 показана перекладка поршня при прохождении им нижней мертвой точки. При перекладке происходит соударение поверхности юбки поршня о поверхность цилиндра. При значении зазора поршень-цилиндр в допустимых пределах, звук, сопровождающий перекладку поршня, практически не заметен на общем звуковом фоне работающего двигателя. Увеличенный зазор приводит к усилению интенсивности издаваемого звука. Наибольшей интенсивности звук достигает после запуска холодного двигателя, когда поршень и цилиндр имеют одинаковую температуру.  


При прогреве 
двигателя поршень разогревается до больших температур, чем цилиндр (и материал поршня, как правило, имеет больший коэффициент теплового расширения), зазор уменьшается, интенсивность звука снижается. Данная закономерность может отличаться в зависимости от материала и исполнения блока цилиндров.

Выпуск отработавших газов и их взаимодействие с каналами головки блока цилиндров и выпускного коллектора также приводит к появлению звука. Взаимодействие поступающего в двигатель воздуха и топлива с воздушными и топливными каналами также приводит к образованию звука. Но ввиду того, что объем и скорости движения воздуха и топлива значительно меньше объема и скоростей движения отработавших газов, звук, образуемый их истечением, практически не заметен. Звук истечения отработавших газов через систему выпуска является одним из наиболее заметных при работе двигателя.Подвижные соединения, которые не могут быть разделены слоем масляной пленки как в подшипнике скольжения - это подвижные соединения в газораспределительном механизме (илл. 3). Тут процесс трения ближе к пограничному с минимальным накоплением смазочного материала из масляного тумана или принудительного разбрызгивания. Герметичность рабочей камеры двигателя (1) обеспечивается прижатием тарелок клапанов (2) к седлам (3) под действием клапанных пружин (4). На илл. 3 показан клапан в закрытом положении. При этом с коромыслом (5) контактирует цилиндрическая часть кулачка распределительного вала (6). За счет того, что в кинематической цепи кулачек—толкатель—клапан имеется зазор, посадка тарелки на седло в момент закрытия клапана сопровождается ударом и соответствующим ему звуком. Звук работы клапанного механизма является одним из наиболее заметных при работе двигателя. Детали клапанного механизма имеют высокую прочность и не разрушаются под действием таких нагрузок. Повышенные зазоры в приводе клапанов приводят к увеличению уровня шума, создаваемого механизмом.

Цепной привод распределительных валов (илл. 4). В момент посадки зуба цепи на звездочку происходит соударение поверхностей. Ввиду большого количества звеньев цепи и зубьев на звездочках, вращающихся со значительной частотой, звук работы цепной передачи представляет собой шелестение, прослушиваемое в передней части двигателя (в зависимости от расположения газораспределительного механизма).

Подшипники качения (илл. 5), которые используются в опорах валов и роликов ремня привода вспомогательных агрегатов, так же могут быть источником шума. Принцип работы подшипника качения основан на перекатывании тела качения (шарик 1, илл. 5) по дорожке качения в кольцах подшипника (2 и 3). Взаимодействующие поверхности тел качения и дорожек не являются абсолютно гладкими и ровными, и имеют микронеровности. Взаимодействующие поверхности разделены слоем смазки. Взаимодействие микронеровностей сопровождается звуком. При износе подшипников высота микронеровностей увеличивается и повышается уровень издаваемого подшипником звука. Недостаток смазки в подшипнике приводит к увеличению уровня издаваемого звука и износа взаимодействующих поверхностей. Поскольку шаг микронеровностей достаточно маленький (тысячные и менее доли миллиметра), звук работающего подшипника имеет достаточно высокую частоту, то есть представляет собой свист, либо гул. Звук, издаваемый нормально работающими подшипниками качения практически не заметен на общем звуковом фоне двигателя.


При работающем двигателе источники звука есть не только в двигателе, но и в сопряженных с ним элементах трансмиссии:
В двигателе имеются и другие взаимодействующие тела и среды, взаимодействие которых сопровождается звуком. Однако издаваемый ими звук практически не заметен на общем звуковом фоне исправно работающего двигателя.

  • Звук работы подшипников качения, в которых установлены валы трансмиссии.
  • Звук работы зубчатых передач. Зубчатая передача (илл. 6) служит для передачи вращения от одного вала к другому посредством зубчатых колес. Форма и шаг реальных зубьев не являются абсолютно точными.

Взаимодействующие поверхности реальных зубьев не являются абсолютно гладкими, а имеют шероховатости. Для обеспечения работы зубчатой передачи и исключения заедания вследствие теплового расширения зубчатые колеса устанавливаются с зазором. Взаимодействие микронеровностей, выбор зазора, погрешность шага приводят к возникновению звука работающей зубчатой передачи. Для уменьшения трения, снижения износа и уменьшения уровня издаваемого шума на рабочие поверхности зубчатых колес подается слой масла. Однако даже использование смазочных материалов не позволяет полностью избавиться от звука, издаваемого при работе зубчатой передачей. Звук работы зубчатой передачи представляет собой высокочастотный гул. При увеличении зазора, погрешности шага, уменьшении количества смазки уровень издаваемого звука увеличивается.

Частота вращения коленчатого вала двигателя не является постоянной и изменяется за один оборот коленчатого вала. Это обусловлено следующими причинами:

·     Поршни совершают возвратно-поступательные движения. Шатуны совершают сложные плоскопараллельные движения. Соответственно, инерционные силы, возникающие при ускорениях и замедлениях поршня стремятся то раскрутить, то замедлить частоту вращения коленчатого вала.

  • На такте рабочего хода давление в рабочей камере двигателя изменяется. На илл. 7 показан график давлений в рабочей камере двигателя (цикл Отто). Точка 1 соответствует верхней мертвой точке, точка 2 – нижней. Синий участок соответствует такту рабочего хода. Как видно,  давление изменяется, что приводит к дополнительной неравномерности частоты вращения коленчатого вала.

Для стабилизации частоты вращения коленчатого вала применяется маховик – стальной диск, закрепленный на коленчатом вале (илл. 8). Маховик имеет большой момент инерции, в результате, частота вращения выравнивается. 

Чем больше момент инерции маховика, тем более равномерно вращается коленчатый вал. Однако использовать маховик со сверхвысокими значениями моментов инерции не целесообразно. При увеличении частоты вращения двигателя (например, при разгоне автомобиля), часть энергии тратится, в том числе, и на раскручивание маховика.

На современных автомобилях, оборудованных механическими трансмиссиями, применяются двухмассовые маховики (илл. 9). Данный маховик состоит из двух масс: первичной и вторичной. Первичная масса жестко закреплена на коленчатом валу, на ней также закреплен кожух и ступица подшипника скольжения. Вторичная масса соединена с трансмиссией. Фланец жестко закреплен на вторичной массе. Между первичной и вторичной массой имеется упругая связь в крутильном направлении за счет пружин. Конструктивная возможность перемещения вторичной массы относительно первичной в радиальном и осевом направлении отсутствует.
Применение двухмассового маховика позволяется значительно снизить крутильные колебания, передаваемые на трансмиссию от коленчатого вала (илл. 10).

Двухмассовый маховик имеет в своей конструкции подвижные соединения, взаимодействие которых может сопровождаться звуком. Звук работы подвижных соединений исправного двухмассового маховика практически не заметен на звуковом фоне работающего двигателя. Звук взаимодействия поверхностей двухмассового маховика может проявляться в моменты локального изменения частоты вращения коленчатого вала (возрастание функции или убывание, представленной на илл. 10 серым графиком).

Взаимодействующие поверхности рассмотренных выше источников звука совершают движение синхронно с коленчатым валом двигателя. Соответственно, частота издаваемого ими звука будет пропорционально частоте вращения коленчатого вала.

При работающем двигателе наибольшей интенсивности достигают (наиболее слышны на общем звуковом фоне) звуки истечения газов из рабочей камеры на такте выпуска, звуки работы газораспределительного механизма. Заметные на их фоне звуки от других источников, как правило, свидетельствуют о неисправном состоянии узла, издающего звук.

Общая интенсивность звука, издаваемого основными источниками при работающем двигателе, зависит от типа и конструктивных особенностей двигателя. Судить о состоянии этих механизмов двигателя можно путем сравнения испускаемого ими уровня звука с уровнем звука, испускаемого другими аналогичными двигателями.

Автотехническая экспертиза двигателя на предмет выявления посторонних звуком или шумов, особенно после сборки мотора, процесс достаточно сложный и кропотливый. Он требует глубоких познаний в области не только двигателя, но и всех сопутствующих технологий. Если у Вас возникли вопросы по звуку при работе Вашего двигателя, то вы всегда можете проконсультироваться на нашем форуме или просто заключить договор на выезд и проведение исследований.

 

Специалист                                       Александр (ник на форуме Sancho)